

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MECHANICAL TECHNOLOGY NOVEMBER 2017 MARKING GUIDELINES

MARKS: 200

These marking guidelines consist of 18 pages.

Please turn over

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

1.1	B✓	(1)
1.2	C✓	(1)
1.3	D✓	(1)
1.4	B✓	(1)
1.5	C✓	(1)
1.6	D✓	(1)
1.7	D✓	(1)
1.8	C✓	(1)
1.9	B✓	(1)
1.10	B✓	(1)
1.11	A✓	(1)
1.12	C✓	(1)
1.13	B✓	(1)
1.14	B✓	(1)
1.15	B✓	(1)
1.16	D✓	(1)
1.17	B✓	(1)
1.18	B✓	(1)
1.19	B✓	(1)
1.20	A✓	(1)
		[20]

3 NSC - Marking Guidelines

(Any 3x1)

(3)

(2)

QUESTION 2: SAFETY

2.1 Surface grinder:

- Make sure the sparks are of no danger to co-workers. \checkmark
- Do not force the material onto the grinding wheel. \checkmark •
- Do not plunae arind. \checkmark
- Bring the material slowly into contact with the grinding wheel. \checkmark •
- Never clean or adjust the machine while it is in motion. \checkmark
- Use cutting fluid ✓ •
- Know where the emergency stop is located \checkmark •
- Stop the machine before any adjustments \checkmark
- Keep tools clear from moving parts ✓ •

2.2 Hydraulic press:

- To make sure there is no leakages. ✓
- To make sure that the readings are accurate. \checkmark
- To make sure the prescribed pressure is not exceeded. \checkmark

2.3 **MIG/MAGS** welding:

- Working area must be well ventilated. \checkmark •
- Make sure electrical parts are properly insulated. \checkmark •
- Make sure the inert gas cylinder is fixed in an upright position. \checkmark
- Make sure the terminals are connected correctly to the right outlet points. 🗸
- The operator should know how to use the equipment. \checkmark
- The operator must be completely insulated by means of boots, gloves and rubber mats. ✓
- The work area must be partitioned off. \checkmark
- Use protective equipment. (Overall, gloves, apron, welding helmet • etc.) ✓
- Ensure adequate fire precautions. ✓ .
- See that there is no oil or grease around the machine. \checkmark
- Ensure that the working area is clean. \checkmark •

(Any 3x1) (3)

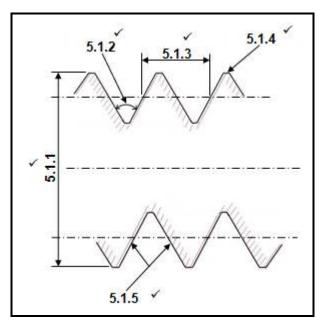
2.4 Spring compressor:

- Make certain the compressor is strong enough for the spring \checkmark •
- The compressor must be fitted correctly and firmly. ✓ •
- Ensure that the spring cannot slip out of position. \checkmark
- A uniform load must be applied. ✓
- Release the load carefully and also uniformly. ✓
- Do not use wire or ropes to compress the spring. \checkmark
- Do not hit with a hammer. \checkmark
- The hookes on the clamps shoul not be warned \checkmark
- Clamps must be evenly distributed \checkmark •
- Do not exceed the maximum tension \checkmark

(Any 2x1) (2)

[10]

QUEST	ION 3: TOO	DLS AND EQUIPMENT	
3.1		ammeter: neter: connected in parallel to a circuit. ✓ neter: connected in series to a circuit. ✓	(2)
3.2	 Direc Alterr Volta Resis Trans Diode Conti Temp 	he multimeter: tt current measurement (DC) ✓ hating current measurement (AC) ✓ ge measurement ✓ stance measurement ✓ stance measurement ✓ stance measurement ✓ stance test ✓ e test ✓ inuity test ✓ berature ✓ ery test ✓ (Any 4x1)	(4)
3.3	The pWorn	ssion Test: Diston rings are worn out. ✓✓ In cylinders. ✓✓ ked piston. ✓✓ (Any 1x2)	(2)
3.4	Tests:		(-)
	3.4.1	A beam bending test is to investigate the deflection / bend $\checkmark \checkmark$ of beams.	(2)
	3.4.2	A cylinder leakage tester is to check whether gases or air leaks $\checkmark \checkmark$ from the cylinders / valve leak.	(2)
			[12]


QUESTION 4: MATERIALS

4.1	Properties of structures:					
	4.1.1	Cementite: hard ✓ and brittle ✓	(2)			
	4.1.2	Ferrite: soft \checkmark and ductile \checkmark	(2)			
4.2	Heating p	process of carbon steel:				
	4.2.1	Iron-Carbon ✓ Equilibrium ✓ Diagram	(2)			
	4.2.2	 A = Ferrite and pearlite ✓ B = Pearlite and cementite ✓ C = Ferrite and austenite ✓ D = Austenite and cementite ✓ E = Austenite ✓ 	(5)			
	4.2.3	700 – 800 °C ✓✓	(2)			

[13]

QUESTION 5: TERMINOLOGY

5.1 Screw thread terms:

5.	5.1.3: NOTE: Any other corresponding point on the screw thread						
Μ	Milling processes:						
5.	.2.1	Up-cut milling ✓	(1)				
5.	.2.2	Down-cut milling ✓	(1)				
	ndexing: ndexing	$=\frac{40}{A}$					

$$=\frac{40}{22}$$

$$=1\frac{18}{22} \times \frac{3}{3}$$

$$=1\frac{54}{66}$$
1 full turn and 54 holes on the 66-hole circle

Copyright reserved

5.2

5.3

(6)

(2)

(2)

(2)

5.4 **Dividing head:**

- 5.4.1 The sector arm save time and removes the possibility of error in counting the number of holes for each move of the index pin. \checkmark
- 5.4.2 The index plate is equipped with accurate spaced holes on different-diameter circles. Each circle has a different number of holes. These circles allow the crank handle to be given an accurate part of a turn to obtain the desired spacing. ✓ ✓
- 5.4.3 The index pin can be set in the crank handle so that it can be dropped into calculated hole and lock the crank the hole circles. $\checkmark \checkmark$
- 5.4.4 Ratio between worm and worm gear: 40:1 \checkmark \checkmark (2)

5.5 **Gear terminology:**

5.5.1	The pitch-circle diameter 'F	CD'				
	$Module(m) = \frac{PCD}{T} \qquad \checkmark$					
	$PCD = m \times T$ \checkmark					
	$= 3 \times 94$					
	PCD = 282 mm 🗸					(3)
5.5.2	The outside diameter:					
	$Outside \ diameter = PCD + 2m$	\checkmark				
	OD = 282 + 2(3)	,				
	OD = 288 mm	\checkmark				(2)
5.5.3	The dedendum:					
	Dedendum $b = 1,157 \text{ m}$	or	b = 1,25m	/		
	$b = 1,157 \times 3$		$b = 1,25 \times 3$			
	b = 3,47 mm		b = 3,75 mm			(2)
5.5.4	The cutting depth:					
	Cutting depth = $2,157 \times m$	or	<i>Cutting depth</i> = $2,25 \times m$	~	/	
	$= 2,157 \times 3$		$= 2,25 \times 3$			
	= 6,47 <i>mm</i>		= 6,75 mn	n 🗸	/	(2)
						[30]

6.5

QUESTION 6: JOINING METHODS

6.1 **Causes of undercutting:**

- Current setting is too high \checkmark
- Current setting is too low ✓
- Faulty electrode manipulation ✓
- Arc length is too long \checkmark
- Welding speed is too fast ✓
- Incorrect electrode size ✓

6.2 **Prevention of slag inclusion:**

- Chip off the slag from the previous weld runs before doing any further welding. ✓✓
- Increase the current setting. $\checkmark\checkmark$
- Ensure that the joint is properly cleaned before any welding is done. $\checkmark \checkmark$
- Ensure constant current flow. ✓✓
- Arc length must be shorter $\checkmark \checkmark$
- Use dry electrodes

6.3 **Liquid dye penetrant test:**

- Dye is sprayed onto the clean surface to be inspected \checkmark
- Allow a short time for the dye to penetrate, then remove excess dye with a solvent ✓
- Wash surface with water and allow to dry ✓
- When the surface is dry spray a developer on the surface to bring out the colour in the dye which is trapped in the cracks or pin holes ✓

6.4 **Advantages of using a MIGS/MAGS welding:**

- Operator needs less skills ✓
- Continuous welds can be done without replacing electrodes ✓

Control the flow of rate of shielding gas \checkmark and measure the flow rate. \checkmark

- Less cleaning of weld, (No slag to be removed) ✓
- It is a quicker process ✓
- Thin material can be welded easily ✓
- Can weld in any position ✓
- Create a better finish ✓
- High deposition rate ✓
- Less distortion ✓

Gas flow meter:

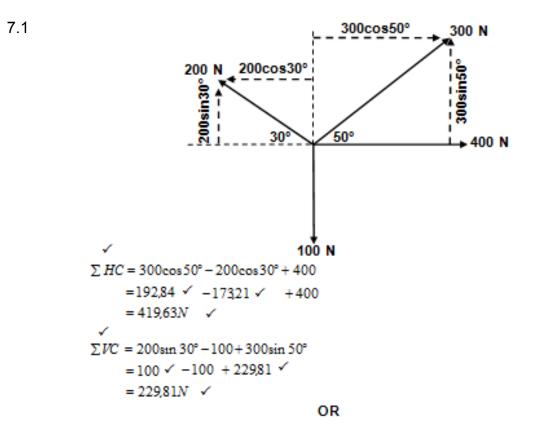
(Any 1x2) (2)

(4)

(2)

(2)

(Any 3x1) (3)


DBE/November 2017

(Any 2x1)

9 NSC – Marking Guidelines

6.6	MIGS/MAGS welding process: A = Melted welding pool / Parent metal / Weld metal / Weld ✓ B = Contact nozzle / Weld pistol / gun ✓ C = Gas shroud / Weld pistol / gun ✓ D = Shielding gas ✓ E = Earth clamp / Skelm / Earth cable ✓		(5)
6.7	 Shielding gas in MIGS/MAGS: To control the welding arc ✓✓ Shield the molten pool from atmospheric gases ✓✓ 	(Any 1x2)	(2)
6.8	 Earth cable: To complete the circuit √√ To maintain constant current √ √ To prevent electric shock √ √ 	(Any 1x2)	(2)
6.9	 THREE types of gasses used for MIGS/MAGS welding: Argon ✓ Teral ✓ CO₂ ✓ Helium ✓ Gas mixture ✓ 	(Any 3x1)	(3)

QUESTION 7: FORCES

Horizontal 🗸 component	Magnitudes	Vertical v component	Magnitudes
-200Cos30°	- 173,21 N ✓	200Sin30°	100 N 🖌
300Cos50°	192,84 🔍 🗸	300Sin50°	229,81 N 🗸
400 N	400 N	0	0 N
0	0 N	-100	- 100 N
TOTAL	419,63 N ✓	TOTAL	229,81 N 🗸
$R^2 = HC^2 + VC^2$	1		

$$R = \sqrt{419,63^{2} + 229,81^{2}}$$

$$R = 478,44N \checkmark$$

$$Tan\theta = \frac{VC}{HC} \checkmark$$

$$= \frac{229,81}{419,63}$$

$$\theta = 28,71^{\circ} \checkmark$$

R = 478,44N at 28,71° north from east \checkmark

(13)

 \checkmark

 \checkmark

7.2 **Stress and Strain:**

7.2.1 **Stress in the bar:**

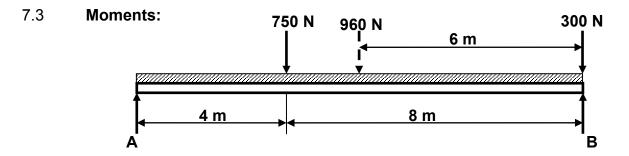
$$A = \frac{\pi D^2}{4}$$
$$= \frac{\pi \times 0,056^2}{4}$$
$$= 2,46 \times 10^{-3} m^2$$

$$\sigma = \frac{F}{A} \qquad \checkmark$$

= $\frac{40 \times 10^3}{2,46 \times 10^{-3}} \qquad \checkmark$
= 16260162.6 Pa
= 16,26 × 10⁶ Pa
= 16,26 MPa

7.2.2 **Strain:**

$$\varepsilon = \frac{\sigma}{E} \qquad \checkmark$$
$$\varepsilon = \frac{16,26 \times 10^6}{90 \times 10^9} \qquad \checkmark$$
$$= 0,18 \times 10^{-3} \qquad \checkmark$$


7.2.3 Change in length:

$$\varepsilon = \frac{\Delta l}{ol} \qquad \checkmark$$
$$\Delta l = \varepsilon \times ol \qquad \checkmark$$
$$= (0.18 \times 10^{-3}) \times 0.85$$
$$= 0.15 \times 10^{-3} m$$
$$OR \qquad \checkmark$$
$$= 0.15 mm$$

(5)

(3)

(3)

Calculate A. Moments about B:

 $\sum RHM = \sum LHM$ $(A \times 12) = (960 \times 6) + (750 \times 8)$ $\frac{12A}{12} = \frac{5760 + 6000}{12}$ A = 980 N

Calculate B. Moments about A:

 $\sum LHM = \sum RHM$ $(B \times 12) = (750 \times 4) + (960 \times 6) + (300 \times 12)$ 12B = 3000 + 5760 + 3600 $\frac{12B}{12} = \frac{12360}{12}$ B = 1030 N

(6)

[30]

NSC – Marking Guidelines

QUESTION 8: MAINTENANCE

8.1	Pour point: The lowest temperature ✓ at which a liquid will flow. ✓		(2)
8.2	 Advantages of cutting fluids: Keep the work piece and cutting tool cool ✓ It prolongs the life of the cutting tool ✓ Ensure a better finish ✓ It washes the cuttings/swarf away ✓ It protects the machine by making the cutting process easie Prevents rust ✓ It increases the productivity because ✓ It is possible to cut faster ✓ It lubricates the machine ✓ 	r √	
		(Any 3x1)	(3)
8.3	'ATF': Automatic transmission fluid ✓✓		(2)
8.4	Main parts of a clutch: Pressure plate ✓ clutch plate ✓ release bearing (Thrust bearing) ✓	(3)
8.5	 Results of a stretched chain: The chain weakens ✓ Generates friction ✓ Vibration occurs ✓ Becomes noisy ✓ Derails easily ✓ Tends to break easily ✓ 	(Any 3x1)	(3)
8.6	 Causes of belt slip: Incorrect tension (loose) ✓ Oil on the contact surfaces ✓ Worn belts ✓ Incorrect pulley alignment ✓ Overloading ✓ Not the correct size ✓ 		
		(Any 2x1)	(2)
			[15]

13

14 NSC – Marking Guidelines

QUESTION 9: SYSTEM AND CONTROLS

9.1 Gear drives:

9.1.1	Rotation frequency of the ou	tput shaft:	
	$N_F _ T_A \times T_C \times T_E$		
	$\overline{N_A}^- \overline{T_B \times T_D \times T_F}$		
	$N_{F} = \frac{T_{A} \times T_{C} \times T_{E}}{T_{B} \times T_{D} \times T_{F}} \times N_{A}$	\checkmark	
	$N_F = \frac{30 \times 20 \times 50}{40 \times 60 \times 70} \times 2300$	\checkmark	
	$V_F = \frac{40 \times 60 \times 70}{40 \times 60 \times 70}$ = 410,71 r/ min	\checkmark	(3)

9.1.2	Velocity Ratio:					
	$VR = \frac{N_{INPUT}}{N}$			$VR = \frac{N_{OUTPUT}}{N}$		
	N _{OUTPUT}					
	_ 2300	\checkmark	or	_410,71	\checkmark	
	410,71		U.	2300		
	= 5,6:1	\checkmark		= 1:0,178	\checkmark	(2)
						· · ·

9.2 Belt Drives:

9.2.1	Rotation frequency of the driven pulley:				
	$V = \pi D n$				
	V				
	$n = \frac{1}{\pi D}$				
	32				
	$=\frac{1}{\pi \times (0,26)}$				
	$n_{r/\min} = 39,18 \times 60$				
	$n_{r/\min} = 2350.6r/\min$	(3)			
		(0)			

9.2.2 **Tensile force in the tight side:**

 $\frac{T_1}{T_2} = 2,5$ $T_1 = 2,5 \times T_2$ $= 2,5 \times 140$ = 350 N

9.2.3 **Power transmitted:** (π, π)

 $P = (T_1 - T_2)v \qquad \checkmark$ $P = (350 - 140) \times 32 \qquad \checkmark$ $= 6720 \ Watts \qquad \checkmark$ (3)

(2)

9.3 **Hydraulics:**

$$A_{A} = \frac{\pi D^{2}}{4} \qquad \checkmark$$
$$= \frac{\pi 0.02^{2}}{4}$$
$$= 0.31 \times 10^{-3} m^{2} \qquad \checkmark$$

$$p_{A} = \frac{F}{A_{A}}$$

$$= \frac{300}{0.31 \times 10^{-3}} Pa$$

$$= 967741.94 Pa$$

$$= 0.97 \times 10^{6} Pa$$

$$= 0.97 MPa$$

9.3.2 Stroke at piston B:

$$A_{B} = \frac{\pi D^{2}}{4}$$
$$= \frac{\pi 0.075^{2}}{4}$$
$$= 4.42 \times 10^{-3} m^{2}$$

$$V_{B} = V_{A}$$

$$A_{B} \times L_{B} = A_{A} \times L_{A} \qquad \checkmark$$

$$L_{B} = \frac{A_{A} \times L_{A}}{A_{B}}$$

$$= \frac{(0,31 \times 10^{-3}) \times 185}{4,42 \times 10^{-3}}$$

$$= 12,98 \, mm \qquad \checkmark$$

(4)

9.4 **Traction control:**

It prevents the wheels from spinning \checkmark \checkmark	(2)

√

 \checkmark

9.5 Safety belt:

Safety belts need to be activated (buckle up) by the driver/passenger $\checkmark \checkmark$ (2)

[25]

(Any 1x1)

(Any 1x1)

(1)

(1)

(6)

(3)

(1)

(1)

QUESTION 10: TURBINES

10.1 Water turbine:

- Waterwheel ✓
- Pelton ✓
- Turgo ✓
- Michell-Banki ✓
- Jonval turbine ✓
- Reverse overshot waterwheel ✓
- Archimedes' screw turbine ✓

10.2 **Runaway speed of a water turbine:**

Runaway speed of a water turbine is its speed at full flow \checkmark and with no shaft load \checkmark (2)

10.3 Water turbine:

10.3.1 **Type of turbine:**

- Reaction turbine ✓
- Kaplan turbine ✓
- 10.3.2 A. Wicket gate ✓
 - B. Rotor √
 - C. Stator ✓
 - D. Shaft ✓
 - E. Water flow ✓
 - F. Blades ✓

10.3.3 Advantages of water turbine:

- Water turbine blades continue to turn on cloudy windless days unlike sun and windy system. ✓
- No water is consumed in this process ✓
- More reliable ✓
- Environmentally friendly with no pollution ✓
- More economical than steam turbines ✓
- Can be mounted vertically to take up less space ✓
 - (Any 3x1)

Function of turbo and superchargers:To increase \checkmark volumetric efficiency \checkmark of an internal combustion engine.(2)

10.5 **Compressor used in a turbocharger:** Centrifugal ✓

10.6 **Turbocharger:**

Exhaust gasses ✓

10.4

(Any 1x1)

17 NSC – Marking Guidelines

10.7 Advantage of a turbocharger:

- It is driven by exhaust gasses ✓
- No power from engine is used ✓
- Power loss above sea level is eliminated ✓
- More power is developed compared to a similar vehicle without a turbocharger ✓
- Less fuel is used compared to engine mass ✓
- To increase volumetric efficiency ✓

10.8 Advantage of a steam turbine:

- It is compact ✓
- No lubrication is needed ✓
- It is more economical ✓
- Converts heat energy into mechanical energy ✓
- Greater thermal efficiency ✓
- Direct drive ✓
- Low maintenance ✓
- High power to weight ratio ✓

(Any 2x1) (2)

[20]

(1)

GRAND TOTAL: 200