basic education

Department:
Basic Education REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 150

SYMBOL	
M	Method
MA	Method with accuracy
CA	Consistent accuracy
A	Accuracy
C	Conversion
S	Simplification
RT/RG	Reading from a table/graph/diagram
SF	Correct substitution in a formula
O	Opinion/Example/Definition/Explanation
P	Penalty, e.g. for no units/incorrect rounding off, etc.
R	Rounding off
NPR	No penalty rounding or omitting units
AO	Answer only, if correct, full marks

This marking guideline consists of $\mathbf{1 6}$ pages.

Question 1 [30 MARKS]			
Ques	Solution	Explanation	Topic/L
1.1.1	D $\checkmark \checkmark$ RT	2RT correct letter (2)	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~L} 1 \end{aligned}$
1.1.2	$\mathrm{G} \checkmark \checkmark$ RT	2 RT correct letter	$\begin{array}{\|l\|} \hline \mathrm{D} \\ \mathrm{~L} 1 \end{array}$
1.1.3	C $\checkmark \checkmark$ RT	2 RT correct letter	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~L} 1 \end{aligned}$
1.2.1	$\begin{aligned} \text { Profit } & =\text { R18 700-R } 14960 \quad \checkmark \mathrm{M} \\ & =\text { R } 3740 \checkmark \mathrm{~A} \end{aligned}$	1 M subtracting correct values 1 A calculating profit AO	$\begin{array}{\|l\|} \hline \text { F } \\ \text { L1 } \end{array}$
1.2.2	$\left.\begin{array}{l} \overbrace{10: 15+5 \mathrm{~h} 50}^{\checkmark \mathrm{M}}=16: 05 \\ 16: 05 \text { OR } \quad 4: 05 \mathrm{pm} \\ \mathrm{vA} \end{array}\right)$ OR 5 past 4 in the afternoon	1 M adding 1A correct time of sale	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~L} 1 \end{aligned}$
$\begin{aligned} & 1.2 .3 \\ & \text { (a) } \end{aligned}$	$\begin{aligned} \text { Radius } & =32,8 \mathrm{~mm} \div 2 \quad \mathrm{MA} \\ & =16,4 \mathrm{~mm} \quad \checkmark \mathrm{CA} \end{aligned}$	1MA dividing diameter by 2 1CA radius	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~L} 1 \end{aligned}$
$\begin{aligned} & 1.2 .3 \\ & \text { (b) } \end{aligned}$	$\begin{aligned} & \text { Distance }=(71,8 \mathrm{~mm}-32,8 \mathrm{~mm}) \div 2 \checkmark \mathrm{MA} \\ &=19,5 \mathrm{~mm} \checkmark \mathrm{CA} \\ & \text { OR } \\ & 71,8 \mathrm{~mm} \div 2=35,9 \mathrm{~mm} \quad \checkmark \mathrm{MA} \\ & \text { Distance }=35,9 \mathrm{~mm}-16,4 \mathrm{~mm} \\ &=19,4 \mathrm{~mm} \quad \checkmark \mathrm{CA} \end{aligned}$	1MA subtracting and dividing 1CA distance OR 1MA subtracting and dividing 1CA distance AO	$\begin{aligned} & \hline \mathrm{M} \\ & \mathrm{~L} 1 \end{aligned}$

Ques	Solution	Explanation	Topic/L
1.3.1	Cost of diluted juice per litre $\begin{aligned} & =\mathrm{R} 44,95 \div 14 \ell \quad \checkmark \mathrm{MA} \\ & =\mathrm{R} 3,210714286 \\ & \approx \mathrm{R} 3,21 \quad \checkmark \mathrm{CA} \end{aligned}$	1MA dividing 1CA cost per litre NPR AO	$\begin{aligned} & \hline \mathrm{M} \\ & \mathrm{~L} 1 \end{aligned}$
1.3.2	$\begin{gathered} 2 \ell: 12 \ell^{\checkmark \mathrm{A}} \\ 1: 6 \checkmark \mathrm{CA} \end{gathered}$	1A correct volume of water and order 1CA simplification Accept $\frac{1}{6}$	$\begin{align*} & \mathrm{M} \tag{2}\\ & \mathrm{~L} 1 \end{align*}$
1.3.3	$\begin{aligned} \text { Number of glasses of juice } & =\frac{14}{0,175} \quad \checkmark \mathrm{MA} \\ & =80 \quad \checkmark \mathrm{CA} \end{aligned}$	1MA dividing the correct values 1CA simplification to a whole number AO	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~L} 1 \end{aligned}$
1.4.1		1 RT all values 1MA ascending order	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~L} 1 \end{aligned}$
1.4.2	July OR $7^{\text {th }}$ month $\checkmark \checkmark$ A	2A correct month (2)	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~L} 1 \end{aligned}$
1.4.3	$9 \quad \checkmark \checkmark \mathrm{~A}$	2A correct mode	$\begin{array}{\|l\|} \hline \mathrm{D} \\ \mathrm{~L} 1 \end{array}$
1.4.4	April OR $4^{\text {th }}$ month ${ }^{\checkmark} \checkmark$ A	2A correct month	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~L} 1 \end{aligned}$
1.4.5	\checkmark A May and July \checkmark A OR $5^{\text {th }}$ month and $7^{\text {th }}$ month	1A May 1A July	$\begin{array}{\|l\|} \hline \mathrm{D} \\ \mathrm{~L} 1 \end{array}$
		[30]	

QUESTION 2 [46 MARKS]			
Ques	Solution	Explanation	Topic/L
2.1.1	R465,00 $\checkmark \checkmark$ RT	2RT correct bus fare	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 1 \end{aligned}$
2.1.2	$\stackrel{\checkmark \text { RT }}{\text { Queenstown and King William's Town }} \stackrel{\checkmark \text { RT }}{ }$	2RT correct cities	$\begin{array}{\|l\|} \hline \text { F } \\ \text { L1 } \end{array}$
$\begin{aligned} & 2.1 .3 \\ & \text { (a) } \end{aligned}$	Port Elizabeth to Bloemfontein $=$ R435,00 $\checkmark \mathrm{RT}$ $\begin{aligned} \text { Cost } & =\mathrm{R} 755,00-\mathrm{R} 435,00 \\ & =\mathrm{R} 320,00 \checkmark \mathrm{CA} \end{aligned}$	1RT R435 1CA cost Accept trial and error method	$\begin{array}{\|l\|} \hline \text { F } \\ \text { L1 } \end{array}$
2.1.3 (b)	King William's Town $\checkmark \checkmark$ RT	CA from Q2.1.3(a) 2RT correct city	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 2 \end{aligned}$
2.1.4	$\begin{aligned} & \text { Cost excluding VAT } \\ & =\mathrm{R} 365,00 \times \frac{100 \checkmark \mathrm{M}}{114} \checkmark \mathrm{M} \\ & =\mathrm{R} 320,175 \ldots \approx \mathrm{R} 320,18 \checkmark \mathrm{CA} \end{aligned}$ OR Cost excluding VAT $=\frac{\mathrm{R} 365}{1,14} \checkmark \mathrm{M} \quad \approx \mathrm{RA} 320,18 \checkmark \mathrm{CA}$ OR 114:365 = 100:x $\quad x=$ price excl. VAT $\checkmark \mathrm{M}$ $\begin{aligned} x & =\mathrm{R} 365,00 \times \frac{100}{114} \checkmark \mathrm{M} \\ & =\mathrm{R} 320,175 \ldots \quad \approx \mathrm{R} 320,18 \checkmark \mathrm{CA} \end{aligned}$ OR $\mathrm{VAT}=\mathrm{R} 365 \times \frac{14}{114} \quad \checkmark \mathrm{M}=\mathrm{R} 44,82$ $\checkmark \mathrm{M} \quad \checkmark \mathrm{CA}$ Cost excluding VAT $=$ R365 $-\mathrm{R} 44,82 \approx \mathrm{R} 320,18$	$\begin{aligned} & 1 \mathrm{M} \times 100 \\ & 1 \mathrm{M} \div 114 \end{aligned}$ 1CA simplification OR 1M dividing 1MA 1,14 1CA simplification OR 1 M proportion 1M x as subject of formula 1CA simplification OR 1 M multiplying with ratio 1M subtracting VAT 1CA simplification NPR AO	$\begin{array}{\|l\|} \hline \mathrm{F} \\ \mathrm{~L} 2 \end{array}$

Ques	Solution	Explanation	Topic/L
2.1.5	From Queenstown to Bloemfontein return trip		F
	$\begin{array}{r} \checkmark \mathrm{RT} \\ =\mathrm{R} 410 \times 2 \end{array}$	1RT correct fare	L2
	$=\mathrm{R} 820 \quad \checkmark \mathrm{CA}$	1CA for calculating the return trip	
	Total travelling cost		
	$=12 \times \mathrm{R} 820 \quad \checkmark \mathrm{M}$	1 M multiplying by 12	
	$=\mathrm{R} 9840 \quad \checkmark \mathrm{CA}$	1CA total cost	
	OR	OR	
	Number of trips $=2 \times 12 \quad \checkmark \mathrm{M}$	1 M multiplying by 12	
	$=24 \quad \checkmark \mathrm{CA}$	1CA total trips	
	Total travelling cost $=24 \times \mathrm{R} 410 \quad \checkmark \mathrm{RT}$	1RT correct fare	
	$=\mathrm{R} 9840 \quad \checkmark \mathrm{CA}$	1CA total cost	
	OR	OR	
	One way cost for a year $\begin{gathered} \checkmark \mathrm{RT} \\ =\mathrm{R} 410 \times 12 \checkmark \mathrm{M} \end{gathered}$	1RT correct fare 1 M multiplying with 12	
	$=\mathrm{R} 4920$		
	Total traveling cost		
	$=\mathrm{R} 4920 \times 2 \quad \checkmark \mathrm{M}$	1M multiplying with 2	
	$=\text { R9 } 840 \checkmark \mathrm{CA}$	1CA total cost	
	OR	OR	
	$\text { Traveling cost }=\stackrel{\vee \mathrm{RT}}{\mathrm{R} 410 \times 2 \times 12 \quad \checkmark \mathrm{M}}$	1RT correct fare 1 M multiplying with 2	
	$=\mathrm{R} 9840 \checkmark \mathrm{CA}$	1 M multiplying with 12 1CA cost AO	
		(4)	

Ques	Solution	Explanation	Topic/L
2.2.1	\checkmark RT July 2013 \checkmark RT\quad OR $07 / 2013$ OR $07 / 13$	1RT month 1RT year	$\begin{aligned} & \text { F } \\ & \text { L1 } \end{aligned}$
2.2.2	$\begin{aligned} & \text { Water and Sewerage } \checkmark \mathrm{RT} \\ & \text { Refuse Removal } \checkmark \mathrm{RT} \end{aligned}$	1RT water and/or sewerage 1RT refuse Penalty for including property rates	$\begin{aligned} & \text { F } \\ & \text { L1 } \end{aligned}$
2.2.3	$\begin{aligned} & \text { November }=3 \text { days, December }=20 \text { days } \quad \checkmark \mathrm{M} \\ & \text { end date 2016/12/20 OR } 20 \text { December } 2016 \quad \checkmark \mathrm{~A} \end{aligned}$	1M adding 1A end date 20 Dec Accept 19 Dec AO	$\begin{aligned} & \hline \text { F } \\ & \text { L1 } \end{aligned}$
2.2.4	Daily average consumption $\begin{aligned} & \quad \stackrel{\vee \mathrm{RT}}{ }=12,00 \mathrm{k} \ell \div 23 \text { days } \quad \checkmark \mathrm{M} \\ & \approx 0,522 \mathrm{k} \ell \end{aligned}$ OR Verifying the consumption rate per day: $\begin{aligned} & \quad \checkmark \mathrm{RT} \\ & =12,00 \mathrm{k} \mathrm{\ell} \div 0,522 \mathrm{k} \mathrm{\ell} / \text { day } \quad \checkmark \mathrm{M} \\ & \approx 23 \text { days } \\ & \\ & 0,522 \mathrm{k} \mathrm{\ell} / \text { day } \times 23 \text { days } \checkmark \mathrm{M} \\ & \approx 12,00 \mathrm{k} \mathrm{\ell} \checkmark \mathrm{~A} \end{aligned}$	1RT correct value 1 M dividing in correct order OR 1RT correct value 1 M dividing in correct order OR 1M multiplying 1A volume	$\begin{aligned} & \hline \text { F } \\ & \text { L1 } \end{aligned}$
2.2.5	Water $\checkmark \mathrm{R}$ The amount of water consumption is not the same every month. $\checkmark \checkmark \mathrm{O}$	1R variable expense 2 O explanation clearly showing change	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 1 \end{aligned}$

Ques	Solution	Explanation	Topic/L
$\begin{aligned} & 2.2 .6 \\ & \text { (a) } \end{aligned}$	$\begin{aligned} \mathrm{A} & =\mathrm{R} 690000 \times \mathrm{RT} 0,0069160 \div 12 \\ & =\mathrm{R} 397,67 \checkmark \mathrm{CA} \end{aligned}$	1RT all values from bill 1CA simplification Note value for B can be used to calculate A AO	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 1 \end{aligned}$
$2.2 .6$ (b)	$\begin{aligned} \mathrm{B} & =\mathrm{R} 397,67-\mathrm{R} 115,27 \checkmark \mathrm{M} \\ & =\mathrm{R} 282,40 \checkmark \mathrm{CA} \\ \mathrm{~B} & =\mathrm{R} 880,10-\mathrm{R} 167,58-\mathrm{R} 430,12 \checkmark \mathrm{M} \\ & =\mathrm{R} 282,40 \checkmark \mathrm{CA} \end{aligned}$	1 M subtracting correct values 1CA simplification OR 1 M subtracting correct values 1CA simplification AO	$\begin{aligned} & \text { F } \\ & \text { L1 } \end{aligned}$
2.2.7	$\begin{aligned} & \text { Sewerage rate per } \mathrm{m}^{2}=\frac{\mathrm{R} 298,36}{463} \quad \checkmark \mathrm{RT} \\ & =\mathrm{R} 0,6444060475 \quad \checkmark \mathrm{~A} \\ & \quad \checkmark \mathrm{RT} \quad \text { OR } \\ & 463 \mathrm{~m}^{2}: \mathrm{R} 298,36 \\ & 1 \mathrm{~m}^{2}: \mathrm{R} 0,6444 \ldots \quad \mathrm{~A} \end{aligned}$	1RT correct values 1A simplification OR 1RT Correct values 1A simplification NPR AO	$\begin{aligned} & \hline \text { F } \\ & \text { L1 } \end{aligned}$
2.2.8	R919,33 $\checkmark \checkmark$ RT	2RT unpaid amount	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 1 \end{aligned}$
2.2.9	Rounding up $\checkmark \checkmark \mathrm{A}$ OR Rounding (off) to the nearest R10,00 OR Rounding (off) to the nearest R100,00	2A Rounding up OR 1A rounding 1A nearest 10 rand OR 1A rounding 1A nearest 100 rand	$\begin{aligned} & \text { F } \\ & \text { L1 } \end{aligned}$
2.3.1	$\begin{aligned} \text { Commission } & =1,95 \% \times £ 360,00 \checkmark \mathrm{MA} \\ & =£ 7,02 \checkmark \mathrm{~A} \end{aligned}$	1MA calculating \% 1A commission in pound AO	$\begin{aligned} & \hline \mathrm{F} \\ & \mathrm{~L} 1 \end{aligned}$

Ques	Solution	Explanation	Topic/L
	$\begin{aligned} \text { Interest after } 1 \text { year } & =\text { R5 } 000 \times 6,3 \% \\ & =\text { R315 } \quad \checkmark \mathrm{M} \end{aligned}$ $\begin{aligned} \text { Amount after year } 1 & =\mathrm{R} 5000+\mathrm{R} 315 \\ & =\mathrm{R} 5315,00 \quad \checkmark \mathrm{~A} \end{aligned}$ $\begin{aligned} & \text { Second year interest rate }=\frac{6,3 \%}{2} \quad \checkmark \mathrm{M} \\ & =3,15 \% \quad \checkmark \mathrm{CA} \\ & \begin{aligned} \text { Interest for } \frac{1}{2} \text { year } & =\mathrm{R} 5315 \times 3,15 \% \\ & \approx \mathrm{R} 167,42 \end{aligned} \end{aligned}$ $\begin{aligned} \text { Value of the fixed deposit } & =\text { R5 } 315+\mathrm{R} 167,42 \\ & =\text { R5 } 482,42 \checkmark \mathrm{CA} \end{aligned}$ OR Amount after year $1=$ R5 $000(1+0,063)^{\checkmark} \mathrm{M}$ $=\text { R5 315,00 } \quad \checkmark \mathrm{A}$ Value of fixed deposit after $1 \frac{1}{2}$ years $\begin{aligned} & =\mathrm{R} 5315\left(1+\frac{0,063}{2}\right) \checkmark \mathrm{M} \\ & \approx \mathrm{R} 5482,42 \checkmark \mathrm{CA} \end{aligned}$	1M calculate interest for first year 1A simplification $1 \mathrm{M} 2^{\text {nd }}$ year rate 1CA half year interest 1CA simplification OR 1M calculate amount for first year 1A simplification $1 \mathrm{CA} 2^{\text {nd }}$ year amount 1M half year 1CA simplification	
		[46]	

QUESTION 3 [21 MARKS]			
Ques	Solution	Explanation	Topic/L
3.1.1	$\begin{aligned} & \text { Number of tables }=240 \div 8=30 \checkmark \mathrm{~A} \\ & \text { Number of balloons }=4 \times 30=120 \checkmark \mathrm{CA} \end{aligned}$	1 A correct number of tables 1CA minimum number of balloons \square	$\begin{aligned} & \hline \text { M } \\ & \text { L1 } \end{aligned}$
3.1.2	Length of decorative ribbon in cm $\begin{aligned} & =2 \times(\text { length }+ \text { width })+1 \\ & =2 \times(10+6 \mathrm{SF})+1=33 \checkmark \mathrm{~A} \end{aligned}$	2SF substituting correct values into the formula 1A minimum length AO	$\begin{aligned} & \hline \text { M } \\ & \text { L2 } \end{aligned}$
3.1.3	$\begin{aligned} \text { Volume } & =\pi \times(\text { radius })^{2} \times \text { height } \\ & =3,142 \times(6 \mathrm{~A} \mathrm{~cm})^{2} \times 28 \mathrm{SF} \\ & =3167,136 \mathrm{~cm}^{3} \checkmark \mathrm{CA} \end{aligned}$	1A radius 1SF correct height and 3,142 1CA simplification NPR	$\begin{aligned} & \hline \text { M } \\ & \text { L2 } \end{aligned}$
3.1.4		1 A calculating 45% 1M multiply by rate 1CA mass in grams 1 C converting to kg to 2 decimal places OR 1 C converting to kg 1 A calculating 45% 1 M multiplying with the rate 1 CA mass in kg to 2 dec. places OR	$\begin{aligned} & \mathrm{M} \\ & \mathrm{~L} 2 \end{aligned}$

Ques	Solution	Explanation	Topic/L
	Mass of sand in a full vase $\begin{aligned} & =1680 \mathrm{~cm}^{3} \times 1,53 \mathrm{~g} / \mathrm{cm}^{3} \quad \checkmark \mathrm{M} \\ & =2570,4 \mathrm{~g} \\ & =2,5704 \mathrm{~kg} \\ & \checkmark \mathrm{C} \end{aligned}$ Mass of sand if filled to 45% $\begin{aligned} & =2,5704 \mathrm{~kg} \times 45 \% \\ & =1,16 \mathrm{~kg} \checkmark \mathrm{CA} \end{aligned}$	1 M multiplying with the rate 1A mass 1C conversion 1CA mass of sand to two decimal places	
3.2.1	$\begin{aligned} \text { Area of triangle } & =\frac{1}{2} \times 4 \mathrm{~cm} \times 3,464 \mathrm{~cm} \\ & =6,928 \mathrm{~cm}^{2} \checkmark \mathrm{CA} \end{aligned}$	1 A substituting correct values in formula 1RT height 1CA simplification NPR AO	$\begin{aligned} & \hline \text { M } \\ & \text { L2 } \end{aligned}$
3.2.2	Total surface Area of a triangular prism	CA from Q3.2.1 1CA substituting area of triangle 1 SF substituting correct values in formula 1CA simplification 1CA total surface area	$\begin{aligned} & \hline \text { M } \\ & \text { L3 } \end{aligned}$
3.2.3	$30 \text { minutes }=1800 \text { seconds } \checkmark \mathrm{C}$ Average time to cover 1 box $=\frac{1800}{20}$ seconds $=90 \text { seconds } \checkmark \mathrm{CA}$ OR Average time to cover 1 box $\begin{align*} & =\frac{30 \mathrm{~min}}{20}=1,5 \mathrm{~min} \checkmark \mathrm{M} \\ & =1,5 \mathrm{~min} \times 60 \mathrm{sec} / \mathrm{min}=90 \text { seconds } \checkmark \mathrm{C} \tag{2} \end{align*}$	1 C conversion to seconds 1CA simplification OR 1M time per box 1C conversion AO	$\begin{aligned} & \hline \mathrm{M} \\ & \mathrm{~L} 1 \end{aligned}$
		[21]	

QUESTION 4 [27 MARKS]

NOTE :MPU \& NC maximum [23 MARKS] to be scaled to 27 MARKS

Ques	Solution	Explanation	Topic/L
4.1.1	$\checkmark \checkmark \mathrm{A}$ Bar scale OR Scaled bar OR Linear scale OR Graphical scale	2A identifying type of scale (2)	$\begin{aligned} & \text { M\&P } \\ & \text { L1 } \end{aligned}$
4.1.2	Top view OR Aerial view OR Bird's eye view $\checkmark \checkmark$ A OR Satelite view	2A correct view of the map	$\begin{aligned} & \text { M\&P } \\ & \text { L1 } \end{aligned}$
4.1.3	South East OR SE OR East of South	2A identifying correct direction	$\begin{align*} & \hline \text { M\&P } \tag{2}\\ & \text { L1 } \end{align*}$
4.1.4	$5 \checkmark \checkmark$ A	2A exact number of medical points Accept 4 (2)	$\begin{aligned} & \text { M\&P } \\ & \text { L2 } \end{aligned}$
4.1.5	Mowbray and Observatory	2A identifying correct suburbs Accept Maitland and Saltriver	$\begin{aligned} & \hline \text { M\&P } \\ & \text { L1 } \end{aligned}$
4.1.6	Castle $\stackrel{\checkmark \mathrm{A}}{\mathrm{De}}$ Goede Hoop, Old Biscuit Mill , Planetarium OR 4, 5 and 6	3A identifying correct tourist attractions	$\begin{aligned} & \hline \text { M\&P } \\ & \text { L2 } \end{aligned}$

Ques	Solution	Explanation	Topic/L
4.2.1	$\mathrm{D} ; \underbrace{\mathrm{B} ; \mathrm{E} ; \mathrm{A} ; \mathrm{C} \checkmark \mathrm{~A}}_{\checkmark \mathrm{A}}$	NOTE: [MPU \& NC not to be marked]	$\begin{aligned} & \text { M\&P } \\ & \text { L2 } \end{aligned}$
		1A order BEA 1A end with C	
4.2.2	E OR B $\checkmark \checkmark$ A	NOTE: [MPU \& NC not to be marked]	M\&P L1
		2A correct letter	
4.2.3 (a)	0% OR Impossible OR 0 OR $\frac{0}{130}$ OR None	2A probability (2)	$\begin{aligned} & \mathrm{P} \\ & \mathrm{~L} 2 \end{aligned}$
4.2.3 (b)	Total blocks $=20+25+28+30+27=130 \checkmark \mathrm{~A}$ Probability of taking out a blue block $=\frac{25}{130} \checkmark \mathrm{~A}$ OR $\frac{5}{26} \quad$ OR $\quad 19,23 \% \quad$ OR $\quad 0,19$	1A total 130 1A numerator 1A denominator AO	$\begin{aligned} & \hline \mathrm{P} \\ & \mathrm{~L} 2 \end{aligned}$
4.2.4 (a)	$\begin{aligned} \text { Number of layers } & =35 \mathrm{~cm} \stackrel{\text { MA }}{\div} 16, \\ & =2,12 \ldots \approx 2 \quad \checkmark \mathrm{CA} \end{aligned}$	1MA dividing correct values 1CA exact number of layers AO	$\begin{aligned} & \hline \text { M\&P } \\ & \text { L1 } \end{aligned}$
4.2.4 (b)	Number of cans which can be packed lengthwise $\begin{aligned} & =56 \mathrm{~cm} \div 12,6 \mathrm{~cm} \checkmark \mathrm{MA} \\ & =4,444 \ldots \approx 4 \end{aligned}$ Number of cans which can be packed width-wise $\begin{aligned} & =41 \mathrm{~cm} \div 12,6 \mathrm{~cm} \\ & =3,253 \ldots \approx 3 \checkmark \mathrm{~A} \end{aligned}$ Maximum number of cans $=4 \times 3 \times 2=24^{\checkmark}$ CA	1MA dividing the width or length by 2,6 1A rounding both down to whole numbers 1CA for max number of cans AO	$\begin{aligned} & \text { M\&P } \\ & \text { L3 } \end{aligned}$
		[27]	

QUESTION 5 [26 MARKS]			
Ques	Solution	Explanation	T/L
5.1.1	Broken line graph OR line graph $\checkmark \checkmark$ A	2A correct type of graph	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~L} 1 \end{aligned}$
5.1.2	$\begin{aligned} \text { Number of candidates } & =287453+389615 \\ & =677068 \checkmark \mathrm{CA} \end{aligned}$	1M adding Math and Math Lit 1CA max number of candidates AO	$\begin{array}{\|l\|} \hline \mathrm{D} \\ \mathrm{~L} 2 \end{array}$
5.1.3	100\% OR 1 OR certain OR definite $\checkmark \checkmark$ A	ct probability	$\begin{aligned} & \hline \mathrm{P} \\ & \mathrm{~L} 2 \end{aligned}$
5.1.4	\checkmark RT \checkmark RT $\quad \checkmark$ RT Accounting, Business Studies, Economics and Mathematical Literacy	1RT $1^{\text {st }}$ subject 1RT $2^{\text {nd }}$ subject 1RT last two subjects	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~L} 1 \end{aligned}$
		(3)	
5.1.5	Mathematics $\checkmark \checkmark$ RT	2RT correct subject	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~L} 1 \end{aligned}$
5.1.6	The data of one variable is grouped into subjects OR The data of one variable is not numerical $\checkmark \checkmark \mathrm{A}$	2A explanation	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~L} 1 \end{aligned}$
5.1.7	Business Studies $\checkmark \checkmark$ RT	2RT correct subject	$\begin{array}{\|l\|} \hline \mathrm{D} \\ \mathrm{~L} 1 \end{array}$

Ques	Solution	Explanation	T/L
5.2.1	Copyright payments, advertising costs, bursary, grants etc. (OR any other valid expenditure)	2 O an example of other type of expenditure	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~L} 1 \end{aligned}$
5.2.2	$\begin{aligned} & \begin{array}{l} \text { Donations } \\ =[\mathrm{R} 63-(\mathrm{R} 27,09+\mathrm{R} 21,02+\mathrm{R} 3,78)] \text { billion } \end{array} \\ & =\mathrm{R} 11,11 \text { billion } \checkmark \mathrm{CA} \\ & \text { Percentage donations }=\frac{11,11}{63} \times 100 \% \\ & \approx 17,6 \% \quad \checkmark \mathrm{CA} \end{aligned}$ OR $\begin{aligned} & \mathrm{R} 27,09+21,02+3,78 \\ & =\text { R } 51,89 \text { billion } \end{aligned}$ Percentage income shown $\begin{aligned} & =\frac{\mathrm{R} 51,89}{\mathrm{R} 63} \times 100 \% \\ & \approx 82,4 \% \checkmark \mathrm{M} \end{aligned}$ Percentage donations $\begin{aligned} & =100 \%-82,4 \% \checkmark \mathrm{M} \\ & =17,6 \% \quad \checkmark \mathrm{CA} \end{aligned}$ OR Percentage $\begin{aligned} & =\frac{\mathrm{R} 27,09}{\mathrm{R} 63} \times 100 \%=43 \% \checkmark \mathrm{M} \\ & \frac{\mathrm{R} 21,02}{\mathrm{R} 63} \times 100 \% \approx 33,365 \% \\ & \frac{\mathrm{R} 3,78}{\mathrm{R} 63} \times 100 \%=6 \% \end{aligned}$ Percentage donations $\begin{aligned} & =100 \%-(43 \%+33,4 \%+6 \%) \checkmark \mathrm{M} \\ & =17,6 \% \quad \checkmark \mathrm{CA} \end{aligned}$	1M subtracting from R63 billion 1CA simplification in billions 1CA donations as a \% OR 1M percentage income shown 1 M subtracting from 100% 1CA simplification OR 1M percentage calculation 1 M subtracting from 100% 1CA simplification NPR AO	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~L} 2 \end{aligned}$

Ques	Solution	Explanation	T/L
5.2.3		1RT correct amount 1 M multiplying with $0,7 \%$ 1CA interest amount OR 1RT correct amount 1 M multiplying with $0,7 \%$ 1CA interest amount	$\begin{aligned} & \hline \text { F } \\ & \text { L1 } \end{aligned}$
5.2.4	$\begin{aligned} \text { Difference } & =\text { income }- \text { expenditure } \\ & \checkmark \mathrm{M} \\ & =\text { R } 63 \text { billion }- \text { R54, } 1 \text { billion } \\ & =\text { R } 8,9 \text { billion } \checkmark \mathrm{CA} \\ & =\text { R } 8900 \text { million OR R } 8900000000 \end{aligned}$ OR $\begin{aligned} & \text { Difference }=\text { income }-\underset{\sim}{\text { expenditure }} \begin{aligned} \checkmark \mathrm{M} \end{aligned} \stackrel{\checkmark \mathrm{C}}{ } \\ &=\text { R63 } 000 \text { million }-\mathrm{R} 54100 \text { million } \\ & \checkmark \mathrm{CA} \\ &=\text { R8 } 900 \text { million OR R8 } 900000000 \end{aligned}$	1 M subtracting 1CA simplification in billions 1C for difference in millions OR 1 M subtracting 1 C converting to millions 1CA difference in millions	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{~L} 2 \end{aligned}$
		[26]	
		TOTAL: 150	

