basic education

Department:
Basic Education REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

ELECTRICAL TECHNOLOGY

NOVEMBER 2017
MARKING GUIDELINES

MARKS: 200

These marking guidelines consist of 17 pages.

INSTRUCTIONS TO THE MARKERS

1. All questions with multiple answers imply that any relevant, acceptable answer should be considered.
2. Calculations:
2.1 All calculations must show the formulae.
2.2 Substitution of values must be done correctly.
2.3 All answers MUST contain the correct unit to be considered.
2.4 Alternative methods must be considered, provided that the correct answer is obtained.
2.5 Where an incorrect answer could be carried over to the next step, the first answer will be deemed incorrect. However, should the incorrect answer be carried over correctly, the marker has to recalculate the values, using the incorrect answer from the first calculation. If correctly used, the candidate should receive the full marks for subsequent calculations.
2.6 Markers should consider that learner answers may deviate slightly from the guideline, depending on how and where in the calculation rounding off was used.
3. This memorandum is only a guide with model answers. Alternative interpretations must be considered and marked on merit. However, this principle should be applied consistently throughout the marking session at ALL marking centres.

QUESTION 1: OCCUPATIONAL HEALTH AND SAFETY

1.1 1.1.1 Operating a machine or equipment without authorisation

Failing to switch and lockout power when servicing a machine Bypassing or removing safety guards
Wearing unsafe clothing or protective clothing
Playing around in the workshop
Using defective or faulty equipment
1.1.2 Inadequate guarding of machines \checkmark

Overcrowding in the workshop
Inadequate warning system
Excessive noise
Poor ventilation
Poor house keeping
Insufficient lighting
1.2 Each member of the team will be given responsibility \checkmark

Team members help each other to work honestly \checkmark
Team members help each other to work safely \checkmark
Team members help each other to work efficiently
Team work contributes towards the advancement of the team's goal.
1.3 Identify and apply pressure on \checkmark the pressure point next to the bleeding area \checkmark Lift and keep the bleeding area above the heart level Use a clean sterile bandage to dress the bleeding area
1.4 Any form of drug-abuse has the potential to reduce the ability \checkmark of an employee to work safely and cautiously \checkmark and these may lead to the amount of production been reduced or rejected due to substandard work.

QUESTION 2: THREE-PHASE AC GENERATION

2.1 Neutral point is available when connected in star for distribution to consumers, $\quad \checkmark \quad$ allowing for both phase and line voltage (Two voltages are available)
Load distribution and phase balancing become possible \checkmark
Three phase supply systems are more versatile because they can be operated in star or in delta.

Note to marker:
When listing advantages of a three phase motor, this will be deemed incorrect.
2.2

Note: Alternative correct labelling should be considered and marked on merit. Correctly labelled phasor diagrams are acceptable.
2.3 The two wattmeter method cannot determine if the power factor is leading or lagging.
$2.4 \quad 2.4 .1$

$$
\begin{align*}
S & =\sqrt{3} V_{L} I_{L} \tag{1}\\
V_{L} & =\frac{S}{\sqrt{3} \times I_{L}} \\
& =\frac{25 \times 10^{3}}{\sqrt{3} \times 38} \\
& =379,84 \mathrm{~V} \tag{3}
\end{align*}
$$

2.4.2 $\quad V_{L}=\sqrt{3} \times V_{P H}$

$$
\begin{align*}
V_{P H} & =\frac{V_{\mathrm{L}}}{\sqrt{3}} \\
\mathrm{~V}_{\mathrm{PH}} & =\frac{379.84}{\sqrt{3}} \\
& =219,31 \mathrm{~V} \tag{3}
\end{align*}
$$

2.4 .3

$$
\begin{align*}
Z_{P H} & =\frac{V_{P H}}{I_{P H}} \\
& =\frac{219.31}{38} \\
& =5,77 \Omega \tag{3}
\end{align*}
$$

2.5 An improved power factor will lead to less wasted energy \checkmark thus leaving more power available to consumers.
Power is utilised more effectively thus reducing generation cost.
Eskom will have more power available to supply consumers; with the improved power factors, there will be more power available on the national grid.

QUESTION 3: THREE-PHASE TRANSFORMERS

3.1 The purpose of a transformer is to step down \checkmark or step up an alternating voltage.
To transfer power from one ac circuit to another, with a change of voltage and corresponding current flow.
To isolate one circuit from another electrically.
3.2 Copper losses \checkmark
$I^{2} R$ losses
3.3 Air cooling \checkmark

Oil filled self-cooling
Oil filled water cooling
3.4 The transformer will overheat, \checkmark the insulation between the windings will be damaged depending on the degree of heat \checkmark and in extreme cases this will lead to internal short circuit.
Gas forming can occur which is in turn is highly combustible
3.5 Used to distribute power to consumers \checkmark in the substation It provides a neutral point to the four core end user system. \checkmark
To step down the voltage to a 380 V three-phase and 220 V single phase supply.
3.6
3.6.1 $\mathrm{S}=\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}}$

$$
\begin{align*}
I_{L 2} & =\frac{S}{\sqrt{3} V_{L}} \\
& =\frac{120000}{\sqrt{3} \times 380} \\
& =182,32 \mathrm{~A} \tag{3}
\end{align*}
$$

3.6.2 $\begin{array}{lll}I_{P H}=I_{L} & \checkmark \\ & =182,32 \mathrm{~A} & \checkmark\end{array}$
3.6.3 $\quad \mathrm{P}=\sqrt{3} \mathrm{~V}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \theta$
$=\sqrt{3} \times 380 \times 182.32 \times 0.9$
$=107999,32 \mathrm{~W}$
$=108 \mathrm{~kW}$
Note: $\mathrm{P}=\mathrm{S} \times \operatorname{Cos} \theta$ is also correct
3.7 The secondary winding of a step down transformer has a thicker wire that will accommodate \checkmark a higher current \checkmark in the secondary.

QUESTION 4: THREE-PHASE MOTORS AND STARTERS

4.1
4.1.2 The connection to any TWO \checkmark of the windings must be swapped.
4.1.3 Delta connection will develop the greater torque. In delta the full line voltage will be connected across each winding.
This increased voltage will give rise to an increased current. \checkmark This increased current will create stronger magnetic fields therefore leading to a greater output torque.
4.2 A Three-phase induction motor requires less maintenance as it does not have as many parts as a single phase motor. \checkmark
For the same size frame as a single phase motor it delivers higher torque.
4.3 4.3.1 The resistive reading of the W winding is not close to the readings on the other two windings suggesting a fault. \checkmark Due to the high value the winding could indicate an open circuit / loose connection in that winding.
4.3.2 A 0Ω reading would indicate a short circuit \checkmark between earth and the winding.
4.3.3 The megger (insulation resistance tester) must be set to the 1000 V setting
One lead must be connected to one of the windings and the other lead to the other winding.
The reading must be taken and the test repeated between all three windings
4.4 4.4.1 $n_{R}=n_{S}(1-S)$
$\mathrm{n}_{\mathrm{R}}=1500(1-0,06)$
$\mathrm{n}_{\mathrm{R}}=1410 \mathrm{r} / \mathrm{min}$
4.4.2 The frequency determines the speed \checkmark at which the motor will run \checkmark If the frequency of the supply changes the speed of the motor will change.
A change in speed of the motor will affect the load speed which could be detrimental to the load \checkmark
$4.5 \quad 4.5 .1$

$$
\begin{align*}
\mathrm{S} & =\frac{\mathrm{P}_{\text {OUT }}}{\eta \times \cos \theta} \\
& =\frac{6800}{0,95 \times 0,8} \\
& =8947,36 \mathrm{VA} \\
& =8,95 \mathrm{kVA} \tag{3}
\end{align*}
$$

4.5.2 $\operatorname{Cos} \theta=0,8$

$$
\begin{aligned}
\theta & =\cos ^{-1} 0,8 \\
& =36,87^{\circ}
\end{aligned}
$$

$$
\begin{align*}
Q & =S \times \sin \theta \\
& =8947,36 \times \sin 36,87 \\
& =8,947 \times 0,6 \\
& =5368,42 \mathrm{VAr} \\
& =5,37 \mathrm{kVAr} \tag{5}
\end{align*}
$$

4.6 4.6.1 Sewerage pumps \checkmark

Conveyer belt
4.6.2 Without the start been depressed the timer contactor would be energised \checkmark starting motor two after the timer has timed through \checkmark
(2)

[^0]
QUESTION 5: RLC

5.1 Impedance is the total opposition offered to the flow of current \checkmark when a RLC circuit is connected across an alternating voltage supply. \checkmark
5.2 \quad 5.2.1 $\quad V_{L}$ is greater than V_{C} which will result in a leading reactive voltage \checkmark The current I_{S} will lag the voltage V_{S}. Therefore the circuit is resistive inductive.
5.2.2 If the frequency of the supply was increased the inductive reactance X_{L} of the coil would increase \checkmark as X_{L} is directly proportional to the frequency of the supply.
If the inductive reactance of the coil increased the voltage across the coil V_{L} would increase.
5.2.3 $\quad V_{T}=\sqrt{V_{R}{ }^{2}+\left(V_{L}-V_{C}\right)^{2}}$

$$
=\sqrt{110^{2}+(80-50)^{2}}
$$

$$
\begin{equation*}
=114,02 \mathrm{~V} \tag{3}
\end{equation*}
$$

$5.3 \quad 5.3 .1 \quad \mathrm{I}_{\mathrm{T}}=\sqrt{\mathrm{I}_{\mathrm{R}}{ }^{2}+\left(\mathrm{I}_{\mathrm{L}}-\mathrm{I}_{\mathrm{C}}\right)^{2}}$

$$
=\sqrt{5^{2}+(6-4)^{2}}
$$

$$
\begin{equation*}
=5,39 \mathrm{~A} \tag{3}
\end{equation*}
$$

5.3.2

$$
\begin{align*}
\theta & =\cos ^{-1} \frac{l_{R}}{l_{T}} \\
\theta & =\cos ^{-1} \frac{5}{5,39} \\
& =21.93^{\circ} \tag{3}
\end{align*}
$$

5.3.3

$$
\begin{aligned}
X_{L} & =\frac{V_{T}}{I_{L}} \\
& =\frac{240}{6} \\
& =40 \Omega
\end{aligned}
$$

QUESTION 6: LOGIC

6.1 Reduced space \checkmark

Use less energy \checkmark
Less maintenance \checkmark
More reliable
Faster response time
Flexible and
Economical
6.2 Ladder diagrams \checkmark

Function blocks \checkmark
Sequential function Instructional list
Structured text.
6.3

Note: Alternative labelling of the Karnaugh Map should be considered, thus
influencing the placement and grouping of operands, however, the answer
remains intact
Two Marks - Labelling
Five Marks - operands in K-Map
NO Marks for Grouping
One mark per operand in equation
One Mark for function in equation.
6.4
$\mathrm{F}=\left(\frac{\checkmark}{\mathrm{A}+\mathrm{B}}\right)_{\checkmark}(\mathrm{AB})+\bar{\checkmark}$
One mark for each operand (AND/OR
One mark for each inverse (not indicator) not sign
6.5 $\quad Q=\bar{A} \bar{B} C+\bar{A} B C+A B C+A \bar{B} C$

$$
\begin{aligned}
& =\overline{\mathrm{A}} \cdot \mathrm{C}(\overline{\mathrm{~B}}+\mathrm{B})+\mathrm{AC}(\mathrm{~B}+\overline{\mathrm{B}}) \\
& =\overline{\mathrm{A}} \mathrm{C}+\mathrm{AC} \\
& =\mathrm{C}(\overline{\mathrm{~A}}+\mathrm{A}) \checkmark \\
& =\mathrm{C}
\end{aligned}
$$

Note: If learner arrives at answer in less steps = full marks
If learner only shows the answer, award ONE mark.

$6.6 \quad 6.6 .1$

Labels	Description
X_{1}	O/L
X_{2}	Stop
Z_{1}	Marker/flag
Q_{02}	Reverse $M C 2$
Q_{01}	Forward MC1
X_{01}	Start forward
X_{02}	Start reverse

Alternative ladder diagram
6.6.1

Hold in
$\begin{array}{ll}\text { 6.6.2 } & \text { Lifts } \checkmark \\ & \text { Cranes } \\ & \text { Conveyor belts }\end{array}$

QUESTION 7: AMPLIFIERS

7.1 An op amp is an integrated circuit \checkmark of a differential amplifier \checkmark

An op amp is an integrated circuit with a high voltage gain which consists of many components.
It is a circuit that has a very high open loop voltage gain.
7.2 Cheap to manufacture \checkmark Versatile \checkmark
Easy to use
Contain a correctly assembled circuit allowing for fewer external components to be used
7.3 A differential amplifier has two inputs and one output \checkmark. When two inputs are supplied to the amplifier, it amplifies only the difference \checkmark between the two inputs \checkmark
Note: If the learner uses actual values / refers to voltages/inputs and shows answer in arithmetic, the answer must be considered.
7.4 7.4.1 Negative feedback \checkmark

7.4.2 Positive feedback \checkmark

7.5 Positive feedback: A portion of the output signal is fed back to the input \checkmark in phase with the input signal \checkmark
Negative feedback: A portion of the output signal is fed back to the input 180° out of phase \checkmark with the input signal
$7.6 \quad 7.6 .1$

$$
\begin{align*}
V_{\text {out }} & =\left(1+\frac{R_{f}}{R_{\text {in }}}\right) V_{\text {in }} \tag{3}\\
& =\left(1+\frac{170000}{10000}\right) \times 0,7 \\
& =12,6 \mathrm{~V}
\end{align*}
$$

NOTE: The output is possibly driven to saturation depending on the value of the supply voltage
7.6.2

$$
\begin{align*}
A_{V} & =\frac{V_{\text {out }}}{V_{\text {in }}} \\
& =\frac{12,6}{0,7} \\
& =18 \tag{3}
\end{align*}
$$

7.7 Audio amplifiers \checkmark

Filters \checkmark
Oscillators
Controllers
7.8 Pulse detector \checkmark

Contact debouncer
7.9 Bi-stable multi-vibrator remains in one state (Reset) \checkmark until a new trigger sets it to a different state (Set) where it will remain.
The mono-stable multi-vibrator will change state (Set) when triggered \checkmark. It will remain in this state for a set amount of time after which it will return to its original/stable state. (Reset) \checkmark

INTEGRATOR OP-AMP

7.10 .2

INVERTING COMPARATOR

(3)

Note: If no input is drawn, care must be taken to the proportion and the placement of the output waveform when allocating marks.
7.11

$7.12 \quad 7.12 .1$

$$
\begin{align*}
V_{\text {out }} & =-\left(\frac{R_{f}}{R_{\text {in }}}\right) V_{\text {in }} \\
& =-\left(\frac{200000}{20000}\right) \times 5 \\
& =-50 \mathrm{~V} \tag{3}
\end{align*}
$$

7.12.2

$$
\begin{align*}
A_{v} & =-\left(\frac{R_{f}}{R_{\text {in }}}\right) \\
& =-\left(\frac{200000}{20000}\right) \\
& =-10 \tag{3}
\end{align*}
$$

7.13 To clean noisy signals.

To implement another type of multi-vibrator. Interfacing of analogue and digital signals.
Measuring of frequency in AC circuits.
Change any waveform into a square wave.
7.14

$$
\begin{align*}
f_{r} & =\frac{1}{2 \pi \sqrt{L C}} \tag{1}\\
& =\frac{1}{2 \times \pi \sqrt{\left(27 \times 10^{-3}\right) \times\left(47 \times 10^{-6}\right)}} \\
& =141,28 \mathrm{~Hz} \tag{3}
\end{align*}
$$

7.15

$$
\begin{align*}
\mathrm{f}_{\mathrm{r}} & =\frac{1}{2 \pi \mathrm{RC} \sqrt{2 \times \mathrm{n}}} \\
& =\frac{1}{2 \times \pi \times\left(25 \times 10^{3}\right) \times\left(45 \times 10^{-12}\right) \times \sqrt{2 \times 3}} \\
& =57755,32 \mathrm{~Hz} \\
& =57,76 \mathrm{kHz} \tag{3}
\end{align*}
$$

[^0]: 4.6.3 When the start button is depressed $M C_{1}$ is energised starting $M_{1} \checkmark$ $\mathrm{MC}_{1} \mathrm{~N} / \mathrm{O}_{1}$ will now close and will hold the circuit in when the start is released \checkmark
 $\mathrm{MC}_{1} \mathrm{~N} / \mathrm{O}_{2}$ will now close energising the timer contactor which will begin the timing process \checkmark
 The T N/O will close after a predetermined time, energising MC M_{2} contactor switching M_{2} on \checkmark
 4.6.4 The control circuit is designed so that O/L's are connected in series \checkmark with the contactor coil of each motor's contactor. \checkmark The two overloads may be set independently \checkmark which would protect each of the motors independently.

